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.\bstraet-Three coupled integral equations are formulated for the direct problem of scattering of
obliquely incident longitudinal plane waves from a rectangular cra,k. Chebyshev functions arc used
to e~pand the unknown crack opening displacements and to convert the integral equations into an
mfinite linear system of simultaneous equativ1ns which are solved by numerical truncation. The
st~ltic and dynamic stress intensity factors for a square crack under normal incidence show very
good agreement with all data reported by other researchers. For a rectangular crack. the ratio
between the two local ma~ima of Mode I stress intensity factors is found to be the square root of
the aspeCI ratio. A Rayleigh wave membrane anal,'gy is used to e~plain the appearan" of peaks in
the dyn~lIllic responses. All the results for ,racks under oblique inciden'C arc new. as well as the
":attered f~lr·tieidsand their long wavelength (IT quasi·slalic limits. The asymptotes of the scattering
cross·se,tions in the lugh frequen,y regi,'n arc found to vary linearly with the cosines v,f the im:ident
angles. and a ,orner elk\:! is observed in the s,att,ring patterns f,'r IIllld,ratcly high fr,qlll:n,i".

I. I :-iTR()[)!i( TION

The study of dasti<.: wa\(; s<.:attering hy <.:ra<.:ks is of some importan<.:e in the lidd of ultrasoni<.:
Illln-destru<.:tive testing and evaluation. However. to date there have heen few analytical or
numerical studies on three-dimensional crack configurations. In particular. we note the
work of !tou (19XO) who used eigenfunction expansions and integral transforms to formulate
solutions for a rectangular crack with a normally incident plane wave. The same method
was employed hy Krenk and S<.:hmidt (19X2) for a circular crack under oblique incidence.
Lin and Keel' (19X7). Budre<.:k and Achenha<.:h (19X8) and Nishimura and Kobayashi (19XS)
applied the boundary integral equation method (IJ(EM) to tackk scattering prohkms by
cracks of arbitrary shapes.

The aim of this paper is to solve the direct problem of scattering of obli4uely incident
Illngitudinal plane \vaves from a prescrihed rectangularly shaped crack. The motivation for
this study skms from the possihle existen<.:e of rectangularly shaped cra<.:ks in composite
makrials. caused for example. by pinning. and also from an interest in the role of the corner
in inl1uencing the scattered far-lidd. The latter clrc<.:t cannot be found in the study of
elliptical cracks or cracks with smoothly varying edges.

Similar to the approach employed by Itou (1980). eigenfunction expansions and integral
transforms are used in Sectilln 2 to formulate the governing equations for the present
prohlcm. Analytical results arc derived in Section 3 for the scattered far-fields together with
their Rayleigh limit. The criteria used to hound the computational errors arc described in
Section 4. followed by discussions of the numerical results for near-field crack opening
displacements (('C.eI) and stress intensity factors (.'l'.:I.!F). and also for the far-field scat­
tering p'ltterns.

:2. FORMULATION OF THE SCATTERING PROBLEM

2.1. J/lIl!lCl/lalica! prelil/linarics
The response of an isotropic elastic solid is expressed as the superposition of the

complex valued incidcnt and scattered displacement fields
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( I )

where the superscript "to(' denotes the total field, "in" the incident field and "sc" means
the scatlen:d field caused by the incidence. Latin subscripts run from I to 3. and the
summation convention is implied throughout for the repetition of indices unless otherwise
stated. Also, the subscript "0" will be used to denote quantities associatcd with the incident
wave. The assumptil)n in these equations and what follows is a time dependence of e ".,t in
all fields. where UJ > 0 is the circular frequency. This dependence is to be understood and
will be suppressed.

For an arbitrarily l)riented incident plane wave,

\\hne .cl;;' is the amplitude, the unit vcctors p and d detinc directions of propagation and
11l)!aritatioll respectively. and k ll = k l or k r is the incident wave number.

(t)

\\IH:n: I' is the mass density. l. II are the Lame constants. and Cr and C, arc the longitudinal
and transverse wave speeds for the material.

The scattered displacement fields are constructed as an integral representation by
cmploying thc second Grccn's identity at an ooservation point x away from the crack. Thus

(4)

with the source point x' running over the entire l:rack surfaces .'/' = ,(,.• u'r,' . where ,(,.
and 1(, arc the surfaces fal:ing down and up respectively. Also. 2:,,;/(x' -x) denote the
elasto dynamic stress fields at an observation point x l:aused by the application of a unit
force at a sourl:e point x· in the Ith direction. and n/ = ±() JI denotes the surf~lce unit
normal, sec Fig. I. The crack opening displacement field ('(,(,'Y') is defined in the crack

Fig. I. The el1nrdlllate systems.
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U,'<l'(X I • XC' 0·) - U,'OI(XI' Xc. 0 -) = u:"(x 1• XC' 0·) - U:"(XI. XC' 0 -)

{
O. XI.X c offcrack:

= ~LI,"'(X,.xc). XI.X c on crack. (5)

Using n~ = -nJ and (5), eqn (4) eventually simplifies to a surface integral over the upper
face of the crack only

(6)

~.~. Deril'lltion of the integral ('qllatiofls
Application of standard procedures (Achenbach et al.. 198~) leads to the following

integral form of the Green's function for an isotropic elastic solid with XJ ~ x\.

I ff~' {I L[( Cf) . 2 L LJ kl
•yo (x' -x) = -- dk dk -k 1-L_ (} + -.-k k e' ,Ix/-,,)

~,i.I' . 8w~ I ~ I' I - C~ " k~ , I
"--T l L r

(7)

and wlll:n suhstiluted into (6) gives the following formula for Ihe scattered displacement
for all values of x\:

1I1'(x) = f1. llx', dX'1 ~l1;"(X'I' x'J !(:~ff < dk, dk 1e'lk ,I"~ ',Hk,C', ',II J4::(k I. k1 ; X d.

(8)

In these expressions

I I [( Cf) . 2 J';8' (k k . \;) = kL 1-" --- -' + --.- kLv ••",1",1
• II I· !.~, I .... C" U/J k'" L ""

1'1. L 'j'

+ ~-[k"i5 +vi5 - ~.-el,eJe"rl'" (9)
Vr ' .\1 I " k~' 1 I •

where the wave number vectors k" arc

( 10)

The equations of motion and the radiation condition at infinity imply that 1m (v,) ~ 0, and

(II )

Following the derivation of (8). the corresponding scattered stress fields are
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where
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( 13)+ }~ !l [(k; J" +k;() 1, )kT + (k,f()/, +k,f (i" )\"f - //,f k,f kTvr ]e"r\,.
The term .JA~1/ physically represents the effect of the 'f,(, '1 component in the Ith direction
<m a stress component along the ith direction in the crack plane oriented in the x\ dimension.
We note the symmetry property .A~1' = .~~1,. Also. it is instructive to write out .A~1'(kl' k~: 0)

:xplicitly so that one may readily see the decoupling of the in-plane and out-of-plane terms
with respect to the crack plane x, = 0:

J',,1I
.7J~

=

o o

o

(14)

(;n:at advantages will emerge from this del:oupling property in some of the subproblems
dealt with in Section 4.

The traction-free boundary condition on the crad surface implies

a;'; +a,'\ = 0, where x \ = O.

Equations (2), (12) and (15) imply that. for all XI, X~ on the l:rack plane.

( 15)

where the first term on the right-hand side stands for the incident stn.:ss fields. and the
second bears the physical interpretation of the total sl:attered stress fields emitted from all
the secondary sourl:es distributed over the entire crack face '{, '. The identities (16) are the
integral equations to be solved for the sought unknown I{,C '../ lields ti.u;'. Note that there
arc three integral equations which must be s"ltislied simultaneously everywhere on the crack
plane. By the nature of the e1astodynamic stress field ( 14), the third equation (i = 3) stands
on its own, while the other two are generally coupled together. The major difficulty of solving
these integral cquations rests with the Green's function, which in the present formulation
is expresscd as a double integral of infinite extent.

:I SOLUTION OF TilE INTEGRAL EQUATIONS

3.1. Reduction to a 5)'51('111 oj'!in('or equatiolls
We proceed to solvc the integral equations by expanding the 1(,['1 in terms of a

complete set of functions. each of which tends to zero at the edges of the crack in a square
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root sense, For the rectangular crack. Ix II ~ (/ and Ix~1 ~ h. see Fig, 2. a suitable set of
functions is the following

{

I .
~ 1cos [I Sin .. I (~)]. (odd l);

IP/( .. ) ::

~ sin [I sin I «()]. (even I).

( 17)

These are related to Chehyshev functions of the tirst kind. The ({,f:.l is then assumed to be

(IX)

Substituting (I X) into (16) and using the identity

where 1, is the /th order Bessel function. yields an infinite linear system of equations

(19)

(p, q :: 1,2, .. ,), (20)

where

(21)

(22)

and \' is Poisson's ratio of the material. The over-bar in these expressions and what follows
denotes the normalized version of quantities. and the dimensionless variables are defined
as ~ = ak ,• '1 = ak 1, kL = akL • f; = akr• Vl = (/l'l. VI' = (/l'r· The parameter t = hla is the
constant aspect ratio. and a superscript "L" is employed for the polarization vector d since
only longitudinal incident waves arc considered in this paper. It is significant to note that
each clement in the matrix of the governing equations (20) is a double integral of infinite
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extent. the kernel of which possesses no singularity. This is a superior feature of the present
method over the boundary integral equation method (DIEM) which is extensively used in
solving scattering problems for cracks. Also. the decoupling property noted previously is
evident by rewriting (20) in the explicit form

(23)

(24)

(25)

3.2. Far~/ield asymptotics
Some general features of the far-field scattering can be deduced without explicitly

solving the system (20). In the far-field. R = Ixl -+ !'JJ. the scattered displacement becomes

""~ (i1t 2) _iink [_iL L (kr) _iT TJ
U, - - 4' ra .<If u L .<If i 9 + k~ .<If, ,'I .

The far-lidd scattering amplitudes arc dclincd by

I

.eI,1 = II, L L Ct.;"n·~r.
m-l n-I

,
T "" I r..r:I , = L L Ct."",.Fi/ ..

m- I N _ I

the direction functions arc

(26)

em

(2X)

(21.)

(30)

where n =: xiR is the observation direction. and the scattered longitudinal and transverse
spherical waves arc

(31 )

Expression (16) shows that at field points which arc remote from the crack the scattered
fields decompose into longitudinal ,lOd transverse components polarized perpendicuhlr to
each other, namely d,L ,cI,' = 0, Also. the dependence of these far-fields on the distance
from the centroid of the crack (31) is completely separated from their directional variations
(27. 2S). and only the latter parts contain the scattering information.

It is informative to explore the Rayleigh or long-wavelength limit of the scattered far­
fields. Gubernatis and Domany (1979) expressed the far-field scattered displacement for an
arbitrarily shaped cavity as

(32)
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and used the orthogonality property between the two scattered far-fidds to define a vector
f such that

(33)

where f is written in tenns of volume integrals. The static Eshelby solutions for ellipsoidal
inclusions were then employed by Gubernatis and Domany to obtain the quasi-static
approximation of f which turned out to have a leading order of w:. By letting the volume
of the cavity tend to zero several characteristics of the scattered far-tidds were recognized
for crack identification and hence called the crack scattering signatures. For the present
rectangular crack. it follows from (27) and (28) that whcn k l (/ « 1. the vector f becomcs
simply

(34)

It is clear in (33) and (34) that reversal of the observation direction. n -+ -no has no
impact on the amplitudes of the far-field spherical waves. This means. as was explained by
Gubernatis and Domany (1979). that the waves will be seen identically from two diame­
trically opposite directions (n and - n): and. more importantly. this is the unique feature
which distinguishes an arbitrary-shaped crack from volumetric defects. Also. if the incident
longitudinal plane wave is directed either perpendicular (0" = () ) \)1' parallel (0" = 90 ) to
the crack plane, sec Fig. 2. only the terms involving ~i I in (34) remain. implying

(35)

(Yl)

Note that these results ha ve no dependence on the pol'lr angle "'. and arc sYlllllletric ahout
the crack plane (U = 90). In sUllllllary. as stated hy Gubernatis and [)omany (1971.), these
long-wavelength scattering signatures can he utilized to lktermine the orientation of a nat
crack.

For the perfectly elastic material considered in this project no energy dissipation is
expected. Hence. the time average of the total energy nux must vanish within any surface
,'/' enclosing the entire crack. implying (Achenb'leh, 11.)82)

I 1m fL(tu*) dY = 0, (37)

where t is the traction on .'}' and * denotes complex conjugate. By allowing the surface .'l'
to tend to infinity and using the method of stationary phase. we ohtain the scattered-power
theorem

where

,
Re [.~:lL(dL)1 = L L Re [~~"nI1J(dL).

", "" I n.,.. I

(39)

The first term in OS) represents the total scattered nux. and the second hears the physical
significance of the interference between the incident wave and the scattered fields along the
forward direction of the incidence dl.. The fact that only .F/L is present in the interference
term originates from the longitudinal nature of the incidence and the orthogonality relation
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.':'/,Ld/ = O. The total scattering cross-section is defined as the time average of the ratio
between the total scattered energy and the incident flu:'< over a unit area. Thus.

~:> UJ) = <.!J"')" = [~lmf[ t'" 1/"'* d.yJ [~lm (<1,n dL um*)J\ <.!J,n> 2 J/", . 2 I} Y I

(40)

where the final equality follows from (38).

-I. :\U:>.IERICAL CALCULATlO:\S A:\D DISCUSSION

The bulk of the numerical calculations involves the evaluation of the double infinite
integrals 1::""0" in eqn (21). The integrands arc e\en functions of their arguments and
therefore the integrals only need to be computed in the first quadrant of the tl-~ plane.
They are further split into four integrals for numerical computation

when.: '.ti( '1. ~) is the integral kernel. Asymptotic' approximations to thc scmi-infinite integrals
arc derivcd for a dlOsen brge number :x » I through repcatcd integrations by parts and
the usc of the leading term in the asymptotic expressions of Bcssel functions for large
arguments. The /inite integrals arc computed by a composite Simpson's rule. The usc of a
pn:-caleulated data table for the Bessel functions actually reduced thc computer CPU timc
oy aoout an order of magnitude. The solution of a truncated version of the simultancous
equations (20) for the unknown expansion eoeflkients was accomplished via an algorithm
oased on Gaussian elimination with LU factorization. Evaluation of the other physical
quantities which arc represented explicitly by the expansion cocllkients is then straight­
forward. To keep the numerical calculations reasonably simple the incident waves were
restricted to be parallclto the XI-Xl plane. sec Fig. 2.

Two accuracy control criteria were employed in the numerical process: the optimal
truncation rule was used in the asymptotic evaluation of the semi-infinite integrals in order
to bound the trunca tion error to a minimum (Bender and Orszag. 1978). A simple truncation
procedure was applied to detc:rmine the number of terms needed in the simultaneous system
of equations. Some results from dilkrent tfUnctions are compared in Fig. J which shows

o
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Fig. 3. A comparison to show the convergence of the c~pansi(lns.
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that with only two Chebyshev functions th~(6(Y can be fit very well in a low frequency
regime where the dimensionkss frequency kL < I. Beyond that. six functions were found
to be sufficient within the frequency range considered. The scattered-power theorem. eqn
(38). served as a check on the over-all consistency of the numerical results. Thus. for all
the numerical results discussed here. the two terms of this equation had a relative error of
kss than one percent. It should be noted that the scattered power theorem can only verify
the consistency of the numerical results. but not the accuracy. since the results from the
two truncation versions mentioned above both had less than I% relative error in the entire
frequency region 0 ~ k l ~ 3.5.

~.I. Crack o{h'l/iIl.Cf disp{(/C('1I1CI/(S

Before discussing dynamic results. we note that in the limit w -+ 0 the system (20)
reduces to the corresponding set of equations for an arbitrarily applied static load. We have
nUlm:rically sllln:d the static equations for a normal load P" in the x) direction. and found
that the ma\imum crack opening displacement of a square crack (r = I) appears at its
centwid and is

(42)

which is ahout 10"" larger than thc correspllllding value for an inscrihed penny shaped
crack

4 (I-I')L\/I~;;~."~I1'I(O. 0) = a/'".
11 Jl

(lIl1i. (lin). Noll.: thal the dill"erence in area between these two cracks is more than 27%.
Some of the dynamic 'I. (1'./ prolilcs for a square crack arc plotled in Figs 4 6. These

'I.e (/5 have heen normalizcd with respect to the right member of (42) with
1'" -= i../::'j.; ,,(). I- 2/t) for the dynamic load. For a normally incident wave of moderate
frequem:y. the only non-zero component .1/1';' has the form shown in Fig. 4. This is clearly
symmetric relative to both the x, and x~ axes. which is also the case in the static limit.
Under oblique incidence another component. .1/11'. becomes non-zero. although one still
has .111~" = 0 because the incident wave is assumed to be parallel to the x ,-x, plane. The

-,
Fig. 4. k\/l71 I'M normally incident waves. k .. = I.



1558 L. Gl "" and A. :-';OKKIS

Fi~ 5. I'\/I·~I f"r an "hliqucly inudcnt W;IV<: with 1/" .~ 1[.\ at hi 0' I

dependelH.:e of the '(.C t./ profiles on the incident angle is illustrated in Figs 5 and 6. and we
note the changing shapes when the excitation frequency is high.

4.2 .•""tr('ss il/tcl/sitr jilcttlrs

Three possible types of stress intensity factor (Y.? oF) arc ddined as

. {I.
J= ..,

d = a.

d= h.
(43)

'I

Fi~. 6. I'\/I~I f"r an "hhqucly IIKldent wave with 1/" = 1[.\ at hi = 1[.
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(45)

(~)
• . [ J.l fJ"Tr 611':'(X·I • X~)]

Kilt = hm --- - ,--- .
',-~ 4(1-\') a ,,/I-.i·

K - I' [~j2Tr 6Ii~C(x'I' X'J]
111>- 1m •

',_h 4 ra /1- -,'\, x
where .i' = x;;d. The Mode II and Mode III Y'.F.!Fs have relatively simple expressions in
the present problem owing to the specific orientation of the incident wave in conjunction
with the inherent symmetry of rectangular cracks. Only the Mode I .'f.!.F is present for
normal incidence: otherwise. all three modes exist. In the static limit the Mode I .'l'.f.F
achieves local maxima at the mid-points of the long (I) and short (s) edges. and can be
simplified to

I xc x . I
K~lrecl"nglc) = ~ '\' '\' is'''''c - (_ I)~y-1

II ., L- L- mn ~

- m~ I n= I n
(46)

(47)

These results were normalized by KL;,,;\", = /~-(~Pll' the .Y'.f.F for a two-dimensional plane­
strain Grillith crack of length 2(/. For a s4uare crack (r = I). as shown in Fig. 7. we have

(48)

This result agrees very well with the data reported by both Weaver (1977) and Mastrojannis
('f al. (1979).

foor rectangular cracks with increasing aspect ratio r > I. the static limit discussed
above gives the absolute maximum Kit at the mid-point of each long edge. Fig. 7. and the
value there approaches the corresponding .'I'.I.Y; for a plane-strain Grillith crack when r
is large enough [r ~ 3. see Weaver (1977)1. The local maximum K

"
on the short edges

hehaves dilrerently. and according to e4n (47) it decreases as the reciprocal of Jr. in
agreement with the numerical results. This phenomenon can he understood by considering
the dose analogy between a prolonged rectangular crack and an elliptical crack. In the
lalter case an exact expression exists for the Mode [ .'I'.I.!F. and a comparison of the !f.l.!F
for elliptical cracks with difl'crent values of r shows that the local maxima behave very much
like those of the rectangular crack. as a function of r. Plots of the .'l'.f.!F for elliptical cracks
Illay be found in the book. by Sih and Liebowitz (1968). By a modest stretch of the
imagination we may ascribe these changes in the local ,V'.I.? maxima to a St Venant

0
...;

t=3

eX)

0 t=2

co
0

r=1
~ .-

..,.
0

CIl \I0

0 i
I0

00 150 300 45.0 600 750 90.0
\JI

fig. 7. ,,:.~,.'".kl versus polar angles'" for dilTerent aspect ratios.
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phenomenon. Thus. for a rectangular crack which is gradually elongated. the constramt
posed on the mid-portion of the long edges by the short ones attenuates. and the ;:/'I7 in
this portion tends to the value for a two-dimensional Griffith crack. By the same reasoning.
as the long edges are extended. their inlluence on the short ones in turn becomes stronger.
and this is related to the decrease of the local maxima of Y'IF,

We note that dilferent features were predicted along the short edges in the paper by
Weaver (1977). However. a careful study reveals that Weaver's results were based on a
different mathematical model of the rectangular crack than used here. In particular. the
maximum value of the .'/.1,7 was estimated using an energy method which allows only the
short edges of the m:tangular crack to grow while tixing the long edges (Budiansky. 1990),
Thus. the predictions of \V'eaver are not in contlict with the present results.

In the tinite frequency region 0 ~ /..:1 ~ 3.5. the maximum KI for a square crack is
displayed in Fig. S. The tirst peak on the solid curve appears at about kl = 0.85. and its
value is ahout 65"" higher than the corresponding static limit. The second peak occurs
around k L = ~.6. and has a magnitude ofO.~~. These data match very well with the results
reported hy Nishimura and Kohoyashi (19~X). The tirst peak is slightly higher than the
corresponding value given hy !tou (InO) where the frequency range of his computations
was 0 ~ k, ~ 1.5.

Using a membrane analogy. after Budreck and Achenbach (llJ8R). the "resonant"
frequencies of the first two Rayleigh modes of the crack faces arc t~)lll1d to be k LR , = O.X7
and k, R. = ~.n2. These can explain the occurrence of the two peaks found on the K, curve
as the constructivc interference hetween thc incident wavc and the excited standing Rayleigh
surface modes on the tr~IL·tion-free crack faces. The rnemhrane analogy is also helpful in
understanding the origin or the peaks appearing on the maximum K, curves for rectangular
cracks under normal incidence. plotted in Fig. lJ. When the aspect ratio r > I. two distinct
Raylcigh mode frequL'lH:ies can he estimated for the .\', and .\': directions sL'parately. and
the reson;lnt fn:quency for the true drum-head mode of the crack faces can be ohtained as
a simple comhination of the two. This proeedun: gives k LR , = 0.655 for r = 2 and
kll<, = O.5X2 for r = 3. which correlate well with the positions of the primary peaks in Fig.
9. The relatively constant position of the secondary peaks can he explained by the dominant
ell'cct of the second Rayleigh mode along lhe short dimension of the cracks.

A general ohservation can be nwde concerning lhe order of ,lppearance of the primary
peaks in Fig. 9: the more a rectangular crack is prolonged, the lower the fre4uency at which
the peak appears. This is consistent with the statement made by Budn:ck and Achenbach
(llJ~~) for elliptical cracks.

The Mode I .'I'IFs of three rectangular cracks under an obliq ue incidence. with
Uu = 45, arc shown in Fig. 10. The high secondary peaks occurring in Fig, 10 arc understood
to be caused by the second anti-symmetric Rayleigh modes which do not exist when the
crack is under normal loading.
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Thl: scaltl:ring ~ross-sl:elion Jdinl:d in (40) is normali/.ed by lhe area of lhc ~r'l~k.

A = ·ka:. and somc numerical n:sulls arc shown in Figs II and 12. The compuled values
of £ for re~langular cra~ks wilh dilli:renl aspe~1 ralio rare plOllcd in Fig. II as a fun~lion
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of the dimensionless frequency, The high frequency asymptotes arc virtually the same for
normal incidence for the range of crack aspect ratios considered. The specific value. ! " 2.
can he interpreted as hoth of the crack faces suhtracting energy from the incident wave and
converting it into scattered waves, The same value of 2 also follows from the usc of the
Kirchhoff approxim;ltion, It is not surprising that Budreck and Achenhach (19SS) found
exactly the same result for a circular crack. i,e, L " 2. since in the high frequency regime
the Kirchhoff approximation can be used for hoth rectangular and elliptical cracks, Note
that tilt: Kirchhoff appn)\imation is independent of the boundary conditions at the crack
edges,

The scattering cross-section is plotted in hg. 12 for a square crack (r = I) under
different incident angles. The high frequency asymptotes of these curves display a simple
relation to the incident angle which can he explained on the hasis of physical elastodynalllics
or the Kirchhoff approximation, Thus, when lhe inciJent angles 0" arc not very large, the
scattered wave is dominated by the rcllcctions. and the high frequency value of L can he
estimated hy the geometrical projection of the crack face onto the plane normal to the
direction of incidence, which implies L(O,,) '" 2 cos 0". This estimation breaks Jown ncar
grazing incidence. II" = rr i 2. hecause the crack edge Jiffraction dominates the scattered field
in the frequency range considered,

4.4, Smtteri1l!l pi/tterns
The scattering patterns arc defined by the scattering amplitudes of the far-field dis­

placements. eqns (27) and (2X), The physical significance of d;· is the angular dependence
of the far-field longitudinal wave. d,~ corresponds to the far-liekl SV-wave, while dS
dclines the angular dependence of the far-field SH-wave. These factors arc illustrated in
Figs IJ 15 in the same way that Krenk and Schmidt (19X2) used to represt:nt the scattering
patterns for a penny-shapt:d crack. In each of these ligures tht: scattering pattt:rn is char­
actt:rized by a pair of graphs with a bird's-eyt:-view on the left looking down on the crack
plane and sidt:-vit:ws on tht: right for an obst:rvation dirt:ction in the crack plant: (st:t: also
Figs I and 2), Tht:st: pattans arc symmt:tric to the x ,-x, plane, and tht:rcfore it is sullicit:nt
to show only half of them. Thus. in t:ach bird's-eye-view the uppt:r half depicts the pattern
abovt: the crack plane with heavy solid lint:s, and the lowt:r half shows the contour lincs of
the pattern beneath the crack plane. and tht:y arc in lighter solid lines. In tht: side-views.
solid or heavy chain-dot lines show the views looking in the positivt: x~ (or Y) direction,
and light dash Iint:s rt:present the vit:w in tht: nt:gativt: x, (or X) direction in cases where
this is difft:rent than the former view,

The scattaing patterns for a squart: erack unda normal ineidt:nce art: shown in Figs
IJ and 14, Comparisons of tht:st: with tht: counterparts published by Krenk and SchmiJt
(19R2) for a circular crack show there is virtually no difraenct: wht:n the incident frequency
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is low. k l = I for instance. This illustrates the point that it is impossible to distinguish the
shape of a crack based on low frequency scattered data.

At higher frequency. such as k~ = 77:. the crack shape becomes visible in the longitudinal
patterns observed from a direction normal to the crack face (Fig. 13). and the corner effects
appear more clearly in the SV-wave patterns (Fig. 14). Because the corners are kinematically
more stiff than the straight edges. it is expected that far less energy is scattered from the
corners than from other parts of the crack edge. This effect is evident from Figs 13 and 14.
Changing the aspect ratio to r = :2 (Fig. 15) further verifies this expectation since the lobes
are much bigger on the longer-edge sides. comparatively smaller on the short-edge sides.
and almost zero about the corner positions. This corner effect is a new feature of rectangular
cracks in contrast with elliptical ones.

Finally. we note that the scattering patterns become much more complicated when the
incidence is oblique (Fig. 16). especially in the high frequency region. and the afore­
mentioned corner effect is difficult to discern. Nonetheless. at r;. = 77: the frequency is
obviously high enough for the scattering patterns to show a ray character. Thus. the
"reflected rays" in Fig. 16 are in the directions predicted by SneJrs law (Achenbach. 1973).
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